Redeemeum

decentralized commerce protocol

Authors: Justin Banon, Gregor Borosa
Whitepaper Version: v1.6, July 2019

Abstract

We present Redeemeum, a decentralized commerce protocol for connecting Web3 to
real world products and customer data. Whilst the vision of a decentralized web is
emerging in the form of the decentralized stack; mass adoption, even across
decentralized payments and finance, has been slow to manifest. We observe that
off-chain commerce applications such as credit cards, combine multiple value types
in order to differentiate and drive adoption. These converged value propositions
include payments with credit finance for purchasing products and services,
combined with loyalty programs that issue points and rewards, and capture
valuable customer data. We put forward the argument that decentralized finance
and payments are currently unable to compete with centralized incumbents
because on-chain and off-chain commerce are disconnected. Further, there is no
open, decentralized and self-sovereign way to: exchange on-chain value for
off-chain products and services; connect smart contracts with off-chain customer
and usage data; or build applications that combine multiple value types. As a
solution to this problem, Redeemeum is a universal, Web 3 component for
representing products and services as tradable smart voucher tokens that connect
to Web 3 customer data. Rather than an end-user application, Redeemeum is a set
of open sourced standards, protocols and smart contracts. Redeemeum connects
on-chain and off-chain commerce by: enabling decentralized exchange of on-chain
value for off-chain products and services; connecting smart contracts to crypto-
incentivized, Web 3 customer data; and enabling developers to build modular
dApps that combine decentralized finance, credit and loyalty with products,
services and Web 3 customer data. The protocol enables the issuance, exchange
and redemption of smart voucher tokens using blockchain technology, smart
contracts, keeper marketplaces and standardized voucher specifications and
interfaces. Redeemeum employs a work token, which coordinates the network,
incentivizes target behaviours such as data sharing, and collects fees from
businesses users of a Web 3 personal data marketplace. The resulting
decentralized commerce ecosystem has the potential to realise our vision: to drive
the mass adoption of decentralized finance and commerce within an open and
equitable Web 3 data economy.

Contents

1 Background

2 Existing solutions

2.1 Centralized voucher systems

3 Solution
The Redeemeum solution
3.1 Summary of protocol architecture
3.2 Comparison with centralized solutions
3.2.1 Triangulation
3.2.2 Transfer
3.2.3 Trust

4 Use cases
4.1 Basic transactions
4.1.1 Redeemeum Smart vouchers
4.1.2 E-commerce transactions
4.1.3 Basic transaction value exchange
4.2 Loyalty and rewards transactions
4.2.1 Blockchain loyalty rewards
4.2.2 Consumer credit rewards redemption
4.2.3 Goods, services and deeds
4.2.4 Loyalty transaction value exchange
4.3 Decentralized finance transactions
4.3.1 Decentralized Finance
4.3.2 Decentralized finance value exchange

5 Technical Requirements

6 Protocol Specification

6.1 Agents
6.1.1 Producers
6.1.2 Consumers
6.1.3 Collectors

6.2 Keepers
6.2.1 Aggregators
6.2.2 Relayers

6.3 Voucher Specification Overview

7 Technology and Architecture
7.1 Introduction to Technology
7.2 Emergent Design

7.3 Architecture Overview

© O OV OV O~y OO0 »

10
10
10
10
11
12
12
12
13
13
14
14
15

17

18
18
18
18
18
19
20
20
21

22
22
23
24

7.3.1 Vouchers market on Permissionless Blockchain
7.3.2 Processing on the Redeemeum network

7.3.3 Communications

7.3.4 Storage & Data

7.3.5 Front-end & Developers support

7.3.6 Interoperability with the wider ecosystem

8 Voucher Issuance and Redemption Process
8.1 Producer-Maker Orders
8.2 Voucher Order Handshake
8.3 Redemption & Challenge Process
8.4 Funds

9 Token Model
9.1 Protocol objectives
9.2 Redeemeum Token
9.3 Token model function
9.4 Token issuance

10 Governance

11 APPENDIX
11.1 Detailed Voucher Specification
11.2 Smart Contracts
11.3 Operational Considerations
11.4 Details of Funds Distribution

24
25
25
26
26
26

27
28
29
29
31

31
31
32
32
33

34

34
34
36
37
39

1 Background

The vision of a decentralized web, where data is liberated from monopolies and
markets are freed from centralized control, is being realised in the form of the
emerging decentralized stack.

Within the decentralized finance space, many components are already available,
including cryptocurrencies for payments, and decentralized lending protocols for
credit. Protocols such as Dharma, Augur, Ox and Maker represent new
interoperable, composable and programmable financial primitives, upon which an
ecosystem of decentralized financial applications is being built. For example,
BlitzPredict is a trust-minimized sports betting DApp that combines Augur to
create markets, Ox to execute trades, and Maker to denominate value. However,
outside of decentralized finance, a wider decentralized commerce ecosystem has
been slower to emerge.

Within the off-chain commerce ecosystem, competition drives consumer commerce
applications to integrate multiple value types including: finance, loyalty products
and services and consumer data. For example, travel co-brand credit cards
combine payments with credit finance for purchasing goods and services. In
addition, co-brands operate loyalty programs that issue points and rewards, and
capture valuable customer data. This combination of value types enables credit
card issuers to differentiate otherwise commoditized products without competing
directly on fees; all the while driving adoption, brand loyalty and customer
engagement.

The vision of Redeemeum is to drive the mass adoption of decentralized
finance and commerce within an open and equitable Web 3 data economy.

Problem statement

Decentralized finance and payments are currently unable to compete with
centralized incumbents because on-chain and off-chain commerce are
disconnected. This breaks down into three basic problems preventing the adoption
of the decentralized commerce ecosystem.

There is no open, decentralized and self-sovereign way to:
1. exchange on-chain value for off-chain products and services.

Due to the consensus mechanisms that control them, smart contracts
cannot directly interact with external systems in order to redeem on-chain
forms of value such as decentralized finance and loyalty for real world goods
and services. As a consequence decentralized applications are either siloed
from off-chain commerce or they must rely on trusted intermediaries in
order to connect with products and services. For example, purchasing a TV
using ETH requires one transaction between buyer and seller for payment,
and a separate off-chain transaction for transfer of the product. It is not
currently possible for a smart contract to perform this exchange on-chain.

2. connect smart contracts with off-chain customer and usage data.

Whilst oracles are designed to connect smart contracts to external data
sources, connecting decentralized systems to unreliable centralized data
sources simply replicates the problem that they were designed to solve. This
is because centralized systems suffer from a number of challenges. Firstly,
data is hoarded within insecure centralized database ‘honeypots’ which are
frequently hacked. Secondly, data can be easily tampered with, censored or
withheld from its rightful owners. Thirdly, there is no incentive for
consumers to share data, instead they are separated from the value that
they create.

3. build applications that combine multiple value types
There is no easy way to build decentralized commerce applications that
integrate multiple components of decentralized finance and loyalty with real
world products and customer data. This has several consequences. Firstly,
single component decentralized payments applications compete and lose

against existing payments that are just ‘good enough’. Secondly,
decentralized finance has no way to differentiate other than by competing on
fees.

2 Existing solutions

2.1 Centralized voucher systems

Centralized systems address the problem of redeeming value for products and
services by enabling stored value (such as electronic money, credits or loyalty
points) to be exchanged for a redeemable promise in the form of a voucher, which
can be redeemed at a later date for physical or digital goods and services. Such
redeemable promises can take various forms including vouchers, gift certificates
and cards, discount coupons, membership cards and loyalty points; or simply a proof
of purchase which is used to collect goods or services. We borrow the following
generic definition of a voucher:

“A ‘voucher’ represents a redeemable promise or “a digital representation of
the right to claim services or goods” Fujimura'

Electronic vouchers require a centralized intermediary in order to operate. Such
voucher scheme operators are typically firms in competition. Rather than adopt a
common voucher standard, rival firms are incentivized to build siloed, proprietary
platforms and issue incompatible vouchers in order to lock-out competitors and
lock-in consumers and producers. As a consequence, many incompatible,
centralized voucher systems fragment the market. This fragmentation multiplies
implementation costs and reduces adoption:

“If a different issuing or collecting system to handle such points or coupons
must be developed for each individual application, the implementation cost will
be excessive, inhibiting the use of such mechanisms.” Fujimura

Centralized voucher schemes reduce transaction costs, albeit suboptimally, across
the three dimensions of: triangulation (searching and measuring quality of
opportunities for exchange), transfer (negotiating terms and exchanging goods,
services, data and value), and trust (contracting and enforcing)®>. Firstly-
triangulation, search is restricted to a proprietary network, and quality
measurement data are asymmetric and at risk of tampering. Secondly- transfer,
redemption is not interoperable across networks and voucher terms are not
programmable. Thirdly- trust, transactions may be censored, payment is via the
trust model and rent-seeking is endemic. Consequently, the transaction cost
efficiencies enabled by centralized intermediaries are mostly limited in scale, local
in scope, and incompatible with decentralized systems.

! "Requirements and Design for Voucher Trading System (VTS)."
https://www.rfc-editor.org/pdfrfc/rfc3506.txt.pdf.
2 "Tomorrow 3.0 by Michael C. Munger - Cambridge University Press."

https:/ /www.cambridge.org/core /books /tomorrow-30 /FC3C681277A6AEC527DB5230AA2
3FB16. Accessed 29 May. 2019.

https://www.rfc-editor.org/pdfrfc/rfc3506.txt.pdf
https://www.cambridge.org/core/books/tomorrow-30/FC3C681277A6AEC527DB5230AA23FB16
https://www.cambridge.org/core/books/tomorrow-30/FC3C681277A6AEC527DB5230AA23FB16

3 Solution

Redeemeum is a wuniversal, decentralized commerce protocol for representing
products and services as tradeable smart voucher tokens that connect to Web 3
customer data.

Rather than an end-user application; Redeemeum is a set of open sourced
standards, protocols and smart contracts. Redeemeum enables developers to easily
build and monetize applications that combine decentralized finance, payments and
loyalty with real world products and Web 3 customer data.

We introduce the concept of a Redeemeum smart voucher (RSV) as an
interoperable, programmable and composable building block of the decentralized
stack. We define an RSV as follows:

A Redeemeum Smart Voucher (RSV) is a financial primitive that represents the
right to claim goods or services in accordance with terms that are programmed
within and enforced by smart contracts.

Rewards

Goods &
Services

The role of Redeemeum Smart vouchers for enabling decentralized commerce

The Redeemeum solution

Redeemeum connects on-chain and off-chain commerce by:

1. Enabling decentralized exchange of on-chain value for off-chain
products and services.
Redeemeum enables products and services, represented as smart voucher
NFTs, to be exchanged for cryptoassets directly on-chain. This enables
smart contracts to purchase and exchange real world product and service
assets. For example, a smart contract could purchase a TV (potentially, but
not necessarily, on behalf of an end-consumer) by exchanging ETH directly
for a RSV token representing the TV. Funds are escrowed until redemption
is cryptographically attested to, and then released to the seller.

2. Connecting smart contracts to crypto- incentivized, Web 3 customer
data.
Redeemeum protocol solves the problem of smart contracts accessing
customer and usage data in a decentralized and self-sovereign way. Each
RSV instance constitutes a secure data channel for consumers to share
product and usage data or receive advertising or promotional messaging.
Whilst the protocol provides incentives to share data, sharing is entirely
voluntary and consumers retain sovereignty over their data at all times.

3. Enabling developers to build modular dApps that combine multiple
value types
As a modular Web3 component, Redeemeum enables developers to build
decentralized commerce applications that combine decentralized finance,
credit and loyalty with products, services and customer data.

3.1 Summary of protocol architecture

Redeemeum leverages a number of actors distributed across two distinct
categories. Firstly, Agents who transact with each other. This category comprises
Producers who sell assets as RSVs, Consumers who purchase and redeem RSVs,
and Collectors who implement RSV promises. Secondly, Keepers who are paid to
perform important maintenance roles for the network. This category comprises
Aggregators who source the supply and maintain the quality of RSVs, Relayers who
host order books of RSVs for sale to Consumers, and Resellers who purchase RSVs
and then exchange or resell them to Consumers.

[Note: a more formal description of Redeemeum’s architecture is provided within
the Protocol Specification section.]

3.2 Comparison with centralized solutions

Redeemeum improves transaction cost efficiency®®® versus centralized systems,
across the following key dimensions:

3.2.1 Triangulation
Finding information and locating opportunities for mutually beneficial exchange.

e Choice and discovery - is extended via a transparent, open market.

e Web 3 customer and usage data- enables self-sovereign and decentralized
storage, cryptoeconomically incentivized sharing, and access to a more
equitable, open data economy.

e Open market structure - enables direct access to customers and peers.

3.2.2 Transfer
Programming price and terms, facilitating payment and enabling redemption
e Universal - the protocol represents core Web 3 infrastructure for representing
almost any type of product or service as a digital asset.
e Decentralized exchange - the protocol enables crypto assets to be exchanged
for real world products directly on-chain, in an open and decentralized way.
e Interoperable - as an open, generic protocol, redemptions of goods and
services are enabled by RSVs issued as non-fungible tokens (NFTs) on the
Ethereum blockchain under the ERC721 standard.
e Programmable - the protocol supports programmable terms for each asset
instance and enables rules-based commerce for products and services.
e Composable - the protocol is a primitive which can be combined with other
modular protocols to create entirely new decentralized applications.
e [mplementation costs - as a universal protocol, Redeemeum reduces the costs
of implementing and integrating multiple proprietary systems.
e Tokenized - the protocol employs a work token model to coordinate actors
through incentives, and open source the network to drive adoption
e Payment is made via secure, low-cost transactions with dispute arbitration
via an intermediary who is game-theoretically incentivized to behave fairly.

3.2.3 Trust
Writing and enforcing contracts.
e Transaction regulation - is enforced cryptographically for on-chain terms;
and, for off-chain terms, through public transparency, decentralized
reputation, and arbitrated escrow

3 "(PDF) Transaction Cost Economics and Organization Theory."
https:/ /www.researchgate.net/publication/31462357 Transaction Cost Economics and O
rganization Theory. Accessed 21 Jul. 2019.

* "The Nature of the Firm (1937) R. H. COASE Economic theory has"
http:/ /www3.nccu.edu.tw/~jsfeng/CPEC11.pdf. Accessed 21 Jul. 2019.

5 "Tomorrow 3.0: Transaction Costs and the Sharing Economy
https:/ /www.amazon.com /Tomorrow-3-0-Transaction-Cambridge-Economics /dp /1108447
341. Accessed 21 Jul. 2019.

https://www.researchgate.net/publication/31462357_Transaction_Cost_Economics_and_Organization_Theory
https://www.researchgate.net/publication/31462357_Transaction_Cost_Economics_and_Organization_Theory
http://www3.nccu.edu.tw/~jsfeng/CPEC11.pdf
https://www.amazon.com/Tomorrow-3-0-Transaction-Cambridge-Economics/dp/1108447341
https://www.amazon.com/Tomorrow-3-0-Transaction-Cambridge-Economics/dp/1108447341

e Rent-seeking - Redeemeum removes the need for centralized intermediaries,
whilst retaining the option of trusted keepers who perform valuable jobs for
the network and compete for compensatory fees®.

e Market structure - the protocol’s decentralized governance structure provides
cryptographically-secured protection against monopolistic rent extraction
and promotes an open, competitive market.

4 Use cases

Use cases for Redeemeum follow, starting with basic transactions, followed by
loyalty transactions and finally decentralized finance examples.

4.1 Basic transactions

4.1.1 Redeemeum Smart vouchers

The protocol’s core functionality enables applications to issue, trade and redeem
goods and services represented as RSV tokens. For example, a producer can issue
a RSV token for a product, trade the RSV for an agreed price, with funds held in
escrow until redemption by the consumer. Payment for RSVs can be made
trustlessly from a whitelist of cryptocurrencies and tokens, or indirectly from
off-chain funding sources including bank accounts and payment cards via
integrations with oracle services.

4.1.2 E-commerce transactions

Current e-commerce transactions require trust between multiple counterparties.
From providing advance payment, through receiving a redeemable promise for
goods, to receiving goods. Redeemeum provides a trust-minimised protocol for
conducting e-commerce transactions which can be used by existing centralized
retailers and decentralized schemes where buyers and sellers are anonymous.

6 "Keepers — Workers that Maintain Blockchain Networks - Medium." 5 Aug. 2017,
https://medium.com/@rzurrer/keepers-workers-that-maintain-blockchain-networks-a401
82615b66. Accessed 1 May. 2019.

10

https://medium.com/@rzurrer/keepers-workers-that-maintain-blockchain-networks-a40182615b66
https://medium.com/@rzurrer/keepers-workers-that-maintain-blockchain-networks-a40182615b66

O© 0 N0 U1+ WIN

,_.._.
= O

—_ e e
oY U1 A~ W DN

4.1.3 Basic transaction value exchange

Producer Aggregator Relayer = Redeemeum Consumer Collector

s, (D> -4
(<)
® . O—>(>—>1
Goods (e
SR S o G Y PO S
Bos () (19)€—()

CHONCRONCHO

. Producer commits to a redeemable promise for goods or services.
. Aggregator creates voucher order.

. Relayer lists voucher order.

. Consumer selects voucher order representing goods or services.

. Consumer purchases voucher by transferring on-chain funds.

. on-chain funds deposited into Redeemeum escrow.

. Redeemeum transfers RSV to Consumer.

. Consumer redeems RSV by presenting to Collector.

. Collector checks Consumer eligibility.

. Collector implements promise by delivering goods or services.
. Consumer receives goods or services.

. Aggregator arbitrates any disputes and disbursement.

. The Redeemeum protocol disburses fees.

. Consumer optionally shares data.

. Redeemeum provides secure channel for data exchange.

. Producer receives customer and usage data.

11

4.2 Loyalty and rewards transactions

4.2.1 Blockchain loyalty rewards

Loyalty and rewards programs enable customers to redeem loyalty points or tokens
for tangible rewards, in order to incentivise customer behaviours, drive brand
loyalty and increase customer engagement. Redeemeum enables the on-chain
exchange of loyalty and rewards tokens into RSVs which are redeemable for
products and services.

For example, a decentralized rewards program could enable users to exchange
rewards tokens into RSVs which could then be redeemed for products and services.
By providing tangible rewards as tradeable RSVs, Redeemeum increases customer
perceived value, applies upward pressure on token price, and provides rich
customer and usage data to businesses.

Additional use case for issuing RSVs as rewards include:

e Crypto exchanges can enable exchange tokens to be redeemed for real world
rewards in order to differentiate on rewards rather than compete on fees,
while increasing the value of the token..

e Blockchain games can enable game items and points to be redeemed for
rewards such as t-shirts, stickers and trophies.

e Blockchain gaming applications such as on-chain bingo can enable prizes to
be paid out in RSVs redeemable for off-chain products.

4.2.2 Consumer credit rewards redemption

Consumer credit products such as credit cards, offer benefits and rewards as a
means of differentiating without discounting pricing, whilst also driving brand
loyalty and card spend. For example, a premium credit card issuer may offer a
bundle of travel benefits such as (airport lounge, spas) and insurance (trip, flight
delay) to support annual card fees and higher interest rates.

The current market for such benefits is highly intermediated within a few
monopolistic players, who provide limited transaction cost efficiencies, extract
significant rents and provide minimal customer and usage data. Redeemeum
enables centralized purchasers to access an open market of interoperable benefits,
which provides a wider range of benefits, at reduced cost and with rich customer
and usage data.

12

4.2.3 Goods, services and deeds

Redeemeum solves problems for charities and creates the opportunity for donors to
trust that their good deeds will reach the intended beneficiaries. One of the major
obstacles to charitable giving is that donors cannot see how their money is spent.

By tokenizing charitable deeds using Redeemeum smart vouchers donors will be
encouraged to purchase charitable deeds such as feeding a family in need or
planting a tree in the forest and be reassured of the impact they are enabling.

Charities and NGOs could further benefit from Redeemeum smart vouchers.
Ultimately, the potential for a tokenized marketplace where customers convert
onchain value (currency or loyalty points) for charitable deeds could be another
channel to support charitable activities. [Source: blockchain for Humanity]|

4.2.4 Loyalty transaction value exchange

Producer Aggregator Loyalty =~ Redeemeum Consumer Collector
Reseller protocol

s, OO
voucher

(o)
~~
A
(o)
~

(—(
gl (o >—<{o—>()y>— 12
(9«

%

g
L]
(=
Ny~
L 4
A
&
¢

CSHCHONONOCECINC

o
&)
A
-
i
&

13

. Producer commits to a promise for rewards (goods, services, discounts, offers).
. Aggregator creates voucher order.

. Relayer lists voucher order.

. Consumer selects voucher order representing rewards.

. Consumer transfers loyalty tokens, points or credits to Reseller.
. Reseller accepts redemption of loyalty value for rewards

. Reseller purchases voucher by transferring on-chain funds.

. on-chain funds deposited into Redeemeum escrow.

. Redeemeum transfers RSV to Reseller

. Reseller transfers RSV to Consumer.

. Consumer redeems RSV by presenting to Collector.

. Collector checks Consumer eligibility.

. Collector implements promise by delivering rewards.

. Consumer receives rewards.

O© 0 N0 U1 &+ WIN

—
= O

— =
ua b~ W N

. Aggregator arbitrates any disputes and disbursement.

. The Redeemeum protocol disburses fees.

. Consumer optionally shares data.

. Redeemeum provides secure channel for data exchange.

. Producer and (20) Reseller receive customer and usage data.

— e s
O 00N O

4.3 Decentralized finance transactions

4.3.1 Decentralized Finance

Centralized consumer credit products such as credit cards, store cards and retail
finance, enable buyers to purchase products now and pay later. By representing
goods and services as Redeemeum RSVs, sellers could provide buyers with access
to decentralized lending pools that are open, decentralized and trustless. For
example, DApps could enable payment to be made for RSVs using funds borrowed
via integrations with DeFi credit protocols such as Dharma, Maker and Compound.

14

O© 00 N0 Ul A WN

,_.,_.
= O

— e
a b~ W N

4.3.2 Decentralized finance value exchange

Producer Aggregator Relayer ~ Redeemeum Lender Consumer

e (=)< 4
Credit <25:>(_<:5:>
Payment <:8:>(" 2 G}

=~

f

Smart 0\ <:>+_ Y
voucher <:9_/ >(10 m
Goods & <E>(_<E>
services

Collector

Payment _69 ® *<E>_)
(o< (<
Rewards GHE)

%

ONCHCNORONCNONC

. Producer commits to a redeemable promise for goods or services.

. Aggregator creates voucher order.

. Relayer lists voucher order.

. Consumer selects voucher order representing goods or services.

. Consumer locks-up crypto funds as collateral.

. Lender issues DeFi credit against collateral.

. Consumer purchases voucher by authorising transfer of credit funds.
. on-chain funds deposited into Redeemeum escrow.

. Redeemeum transfers RSV to Consumer.

. Consumer redeems RSV by presenting to Collector.

. Collector checks Consumer eligibility.

. Collector implements promise by delivering goods or services.
. Consumer receives goods or services.

. Aggregator arbitrates any disputes and disbursement.

. The Redeemeum protocol disburses fees.

15

16. Consumer optionally shares data.

17. Redeemeum provides secure channel for data exchange.
18. Producer (19) Lender receive customer and usage data.
20. Lender gives rewards to Consumer (21).

16

S Technical Requirements

Voucher Trading System should meet the following requirements”:
1. It MUST handle diverse types of vouchers issued by different issuers.
2. It MUST prevent illegal acts, like alteration, forgery, and ensure privacy.
3. It MUST be practical in terms of implementation/operation cost and
efficiency.

Handling diversity

Redeemeum supports the issuance of vouchers by multiple actors on a universal
protocol and handles multiple voucher types, including: coupons, gift certificates,
loyalty points, membership cards, exchangeable tokens for goods or services etc.

Security guarantees

Preventing forgery: it is impossible to forge a Voucher Token as long as standard
cryptographic primitives remain secure. While traditional centralized voucher
systems are typically limited in ways they can validate the redemption of a voucher,
Redeemeum offers significantly more powerful verification capabilities.

Preventing alteration: vouchers cannot be altered after issuance. Voucher orders
can only be cancelled by Producers.

Preventing duplicate redemption: a voucher can only be redeemed by the voucher
holder. Once consumed, it cannot be redeemed again; if the voucher can be used
repeatedly, for example a membership card, it is bound to an expiration period.

Non-repudiation: it is not possible to repudiate issuance, trade or redemption by
actors, as their digital signatures bind them to the commitments.

Ensuring privacy
Despite the open nature of Redeemeum, it is possible to shield some data, esp.
personally identifiable information, following a privacy by design principle.

Operational efficiency

Redeemeum enables discovery of globally available vouchers to anyone, which
previously was impractical due to scattered and heterogeneous sources. The
resilience of its operation rests in the distributed nature of the protocol. The
mature, fully-developed stage of the protocol will be horizontally scalable to meet
the global demand.

7 "RFC 4154 - Voucher Trading System Application ... - [IETF Tools."
https://tools.ietf.org/html/4154. Accessed 13 Dec. 2018.

17

https://tools.ietf.org/html/4154

6 Protocol Specification

Redeemeum is a protocol that enables issuing, administering and trading of
programmable voucher tokens using smart contracts, keeper marketplaces and
standardized voucher specifications and interfaces.

Reedeemum leverages the architecture and methodology of Dharma protocol®,
which itself leverages 0x°, in combination with the VTS (Voucher Trading System'?)
and Generic Voucher Language'' specifications. With Redeemeum actors, namely
Producers, Aggregators, Relayers and Consumers being analogous to Dharma
Debtors, Underwriters, Relayers and Creditors.

6.1 Agents

Agents are the platform participants between which Redeemeum protocol seeks to
facilitate interactions.

6.1.1 Producers
The Agent who is selling an asset to a Consumer for an agreed value.
Producer fees:
e Producers may be required to stake fees which may be slashed for
non-performance.
e Producers may receive fees for performance.

6.1.2 Consumers
The Agent who is buying an asset from a Producer for an agreed value.

6.1.3 Collectors
Collectors are agents who verify and collect the voucher and implement voucher’s
promise.

Collectors perform the following functions:
e Commits to a Producer’s offer to collect a certain category of vouchers.
e [f the Collector wishes to discontinue collecting vouchers, then they will need
to cancel their agreement with the Producer.
e Verifies the voucher validity by triggering on-chain validation.

8 "Dharma White Paper - GitBook." https://whitepaper.dharma.io/. Accessed 8 Dec. 2018.
¢ "White Paper - OxProject." 21 Feb. 2017, https://Oxproject.com/pdfs/0x white paper.pdf.
Accessed 8 Dec. 2018.

10 "RFC 4154 - Voucher Trading System Application Programming !
https://tools.ietf.org/html/4154. Accessed 8 Dec. 2018.
I "RFC 4153 - XML Voucher: Generic Voucher Language - IETF Tools."

https://tools.ietf.org/html/4153. Accessed 8 Dec. 2018.

18

https://whitepaper.dharma.io/
https://0xproject.com/pdfs/0x_white_paper.pdf
https://tools.ietf.org/html/4154
https://tools.ietf.org/html/4153

e Attests to the consumer’s conformity with the terms e.g. by checking and
inputting identity, age, eligibility.
Collects the voucher.
Performs the voucher promise, typically by rendering goods or services.

Note: in case the voucher is issued as a promise for a natively on-chain asset, such
as a token or similar crypto-asset, then the collection can be completely automated
and the Collector replaced with a zero-fee smart contract by following a hash
commitment scheme.

Collector fees:
e Collectors may be required to stake fees which may be slashed for
non-performance.
e Collectors may receive fees for performance.

6.2 Keepers

In common with Dharma, we implement a marketplace comprising two Keepers'?,
for which we use Ryan Zurrer’s definition:

“a catchall term for the different utility players in distributed networks that
maintain stability and perform crucial jobs in the crypto-economic model”

AGENTS: Producers ?ggziﬂfs Collectors
_ Com —
I'r/-r»r 1-%\\I - hh_:_> 'Lf-':' 1 \l
__F/}_ ‘\\ . . } - R 1 {;Dr;} \,___,-/
T — ()
'\-\.____/'_ |"II ___I:_i___/ \"‘-\._.F"f
. 4 Raz — I
Iffrfr;\l / ? hg2]~ r/: oy iff: 3 \l
Il\"\—_:-' II::::\" 1\,___,.-/"I

Cn T
(i;:-}/ Fa 3 Kh_ﬁ_.-"'l I'{ cid \'I
— R,
- (" cna -
R

KEEPERS: Aggregators Relayers

Agents and Keepers - platform interaction diagram

12 "Keepers — Workers that Maintain Blockchain Networks - Medium." 5 Aug. 2017,
https://medium.com /@rzurrer /keepers-workers-that-maintain-blockchain-networks-a401
82615b66. Accessed 8 Dec. 2018.

19

https://medium.com/@rzurrer/keepers-workers-that-maintain-blockchain-networks-a40182615b66
https://medium.com/@rzurrer/keepers-workers-that-maintain-blockchain-networks-a40182615b66

6.2.1 Aggregators
An Aggregator is a trusted entity that receives compensatory fees for performing the
following functions:

Originating a Voucher Order from a Producer
Determining and negotiating the terms of the Voucher (i.e. value/items
redeemable, conditions/restrictions) with the Producer
Committing to the redemption likelihood.
Committing to the redemption quality.
Administering the Voucher Order's purchase by forwarding it to any number
of relayers.
Servicing the Voucher -- i.e. ensuring redemption to terms, Consumer
satisfaction.
In the case of defaults or complaints, arbitrating and deciding whether
escrowed fees are forwarded to Producer or returned to Consumer.
Aggregators are rated by:

o Consumers - Consumer satisfaction, Voucher rating.

o Producers - fairly handling disputes
Therefore there is an incentive for Aggregators to curate high-quality
Producers, resolve challenges fairly and ensure redemptions are made as
agreed.

Aggregator fees:

Aggregators may be required to stake fees which may be slashed for
non-performance.
Aggregators may receive fees for performance.

6.2.2 Relayers
At a basic level, relayers in Redeemeum Protocol perform an analogous function to
relayers in Ox Protocol and Dharma Protocol.

Relayers perform the following functions:

Note:
. Relayers provide Consumers with signed voucher-specific metadata

Relayers aggregate Voucher Orders from any number of Aggregators,

for an agreed upon fee, host the messages in a centralized order book,
provide Consumers with the ability to purchase the requested Vouchers.
Relayers need not hold any agent's tokens, but may do so (see Resellers
below)

associated with the accompanying Aggregator so that they can make
informed purchase decisions about the quality of a given Voucher order.

. Relayers do not freely allow any anonymous party to publish signed Voucher

Orders on to their order book, and use their discretion to only accept
Voucher Orders from known, trusted Aggregators.

20

We define two types of Relayers within Redeemeum protocol:

e Relayers - these will provide simple order book functionality, requiring
Consumers to take custody of and manage Voucher Tokens themselves.
Radar Relay is an example of a typical Simple Relayer.

e Resellers - in addition to hosting an order book, Resellers will abstract away
the underlying technology by purchasing as B2B buyers and maintaining
custody of vouchers on behalf of Consumers. Resellers will then present a
standardized UX to Consumers within wallets and consumer-facing apps.
Examples of potential Resellers include: OTAs, Loyalty Programs and
Payment Card Networks.

6.3 Voucher Specification Overview

We use the Generic Voucher Language definition of a voucher:

A voucher is a logical entity that represents a right to claim goods or services.
A voucher can be used to transfer a wide range of electronic values, including
coupons, tickets, loyalty points, and gift certificates, which often have to be
processed in the course of payment and/ or delivery transactions.

Asset is claimed at the redemption of a voucher, i.e. the goods or services delivered.
It is offered by the Producer to the Consumer and is the basis that a voucher token
is referencing.

Promise denotes the promise of the Producer to deliver the Asset to the Consumer
under programmable restrictions and funds allocation. Promises are a core
construct that enable reusability across a multitude of participants, while still
being anchored to the same Producer.

Promise-Collection construct defines the agreements between Producers and
Collectors, for example, which Collectors are authorized for a set of vouchers and
the fees they expect in return. If there are no restrictions, it can be omitted.

Voucher Offer then wraps a Promise, adding processing details, such as
groupings, validity period etc. It is a base building block for the issuing of
vouchers. Offers are uniformly addressable across all Aggregators and Relayers.

Voucher Order is a construct in the hands of the keepers. There can be multiple
Voucher Orders created from a single Voucher Offer as each derived Order is
assigned to a different Aggregator-Relayer pair, committing to their fees,
Aggregator’s rating of the voucher etc. It is up to the Relayer to display one order
per group or as many orders as are vouchers in the offer’s group.

Redeemeum Smart Voucher, or synonymously, Voucher Token is created when a
Voucher Order is filled - by transferring the requested funds from either the

21

Consumer or from the Reseller. Funds remain locked until redemption or dispute
resolution. The holder can then redeem this token for the promised asset.

Note: the process is sequential, but certain types of vouchers and certain use-cases
do not require all actors to be involved. The full set of objects maximizes

reusability in complex paths.

A more comprehensive specification is in: Appendix - Detailed Voucher Specification.

7 Technology and Architecture

7.1 Introduction to Technology

The basis of Redeemeum protocol lies in blockchain technology. It includes a set of
basic constructs (a promise, an offer etc.) and logic for matching the supply and
demand side of the market.

In the wider ecosystem, Redeemeum protocol sits on top of domain-neutral,
predominantly technocratic platforms and just below the application layer. Itis at
the lowest contact with a specific usage domain (in this case, vouchers) and is to be
used by applications built on top of it. Thus it can be considered as middleware,
as shown in the diagram.

Layer 5 APPLICATIONS

Layer 4 D S ko) RE REDEEMEUM
Layer 3 IDENTITY GOVERNANCE STANDARDS Ay M
Layer 2 SCALABILITY PRIVACY CHESE-GC;;IN ORACLES
Layer 1 (transfer of n‘I-_oEnEfiI:rgd staleflogic) NETWORK STORAGE

The position of Redeemeum in the wider stack
As middleware, Redeemeum builds on sub-systems from the lower layers:

decentralized identity platforms to address its users (e.g. 3box), relies on
governance protocols to manage its operation (e.g. DAOstack), conforms to the

22

standards for its inputs-outputs (e.g. ERC-721) and uses proven key management
services (e.g. Clef). This also marks the scope of Redeemeum.

7.2 Emergent Design

Operating in a nascent space, there are several parts impractical to be implemented
with the current state-of-the-art permissionless blockchains, facing critical issues
with the protection of private data, limited throughput and unpredictable costs of
transactions. While these keep on improving, we acknowledge that there are
certain fundamental limitations.

As we've learned from the past years, the blockchain part of the layer 1 converges
towards global settlement. The layers don’t share the same context, so some design
assumptions can be changed. This is manifested in several emerging approaches,
two of the most relevant for Redeemeum are:

1. application-specific blockchains, that are highly optimized and customized to
a particular domain, but still maintain a full-blown ledger on their own;

2. off-chain techniques, esp. state-channels, that perform the majority of
operations off the main blockchain ledger, relying on transient, off-chain
transactions that only settle on-chain. There is, however, another
opportunity for off-chain logic, involving Ricardian agreements between
actors.

Redeemeum as middleware is designed to be a decentralized system on its
own, but always coupled with layer 1 blockchain networks, such as Ethereum,
for two specific reasons. Firstly, token standards on Ethereum have the largest
adoption by far and they are only getting stronger, so much so that even corporate
blockchain initiatives are taking steps towards interoperability’®. Secondly, the
network effects of Ethereum and its superior development community make it
possible to start building Redeemeum the soonest and contribute to the adoption of
the disruptive blockchain technology.

Redeemeum is expected to morph according to the maturity of its wider ecosystem.
Currently, it is a work in progress and locking-in to a particular architecture
remains open.

13 "Enterprise Ethereum Alliance Launches Blockchain-Neutral Token Taxonomy Initiative
to Accelerate a Token-Powered Blockchain Future — Enterprise Ethereum Alliance." 17 Apr.
2019,
https://entethalliance.org/enterprise-ethereum-alliance-launches-blockchain-neutral-toke
n-taxonomy-initiative-to-accelerate-a-token-powered-blockchain-future/. Accessed 26 Apr.
2019.

23

https://entethalliance.org/enterprise-ethereum-alliance-launches-blockchain-neutral-token-taxonomy-initiative-to-accelerate-a-token-powered-blockchain-future/
https://entethalliance.org/enterprise-ethereum-alliance-launches-blockchain-neutral-token-taxonomy-initiative-to-accelerate-a-token-powered-blockchain-future/

7.3 Architecture Overview

The following diagram represents an overview of components in Redeemeum and

interoperability with (semi-)external service providers.

AMNALYTICS
authenbcate & secure & trade
PERMISSIOMLESS BLOCKCHAIN
transperl & messaging =3 ===
FRONT-END SECURE COMMUNICATION [STORAGE]
'—\-_____'_'_,_,_:-'-"' _______————_ e
vl logic & data & process |
REDEEMEUM NETWORK ORACLES
S — FIAT EXCHANGE R
soveregn |0 payments (fiatcrypto) Lovernance

Redeemeum technological overview

7.3.1 Vouchers market on Permissionless Blockchain
Issuance of voucher tokens, trading and redemption takes place
permissionless blockchain (e.g. Ethereum).

vauchers
market

on public,

e Token issuance is triggered by accepting the funds from the Consumer,
which in turn mints a voucher token, with the terms of redemption, costs

and the ownership of the voucher explicitly and publicly defined.

e Trading is made possible with the voucher token being a standard
non-fungible token (i.e. ERC-721 on Ethereum), therefore supported by the
majority of token wallets. The protocol is not limiting secondary trading,

unless vouchers are so configured.

e Redemption of the voucher is recorded in a secure and immutable manner,
leaving no room for ambiguity. Additionally, it is uncovering the operational

insights of the protocol.

The goal is not to place all functionalities on the permissionless blockchain - on the
contrary, it is to be used as little as possible, but to leverage its main advantages:
authentication of participants, secure creation of vouchers, secure transfers of

funds and trading of tokens.

24

7.3.2 Processing on the Redeemeum network
Before a voucher token can be issued, its nature must be defined and made
available by the keepers. This being a more intensive process in terms of
computation and communication resources, it is implemented on a separate layer,
for example leveraging Swarm, Feeds and Postal Service over Swarm, all the while
closely tied to a permissionless blockchain on tier 1.

At a high level, all the parties that are involved with a particular voucher, need to
agree on the details of the issuance, transfer and redemption of that RSV - in a
cryptographically secure and potentially legally-binding fashion. Then they must
follow through their commitments by way of transactions on the blockchain. The
issuance of the RSV binds the token’s metadata to the off-chain agreement and
establishes a path for the flow of funds on-chain.

Data: the data on this shared ledger is generally open, with exceptions that protect
personal data and potential voucher-specific business secrets. off-chain data can
be made private using standard cryptographic methods, while on-chain privacy
benefits from lower transaction costs on Redeemeum network and could eventually
support a wider range of pre-compiled cryptographic operations.

Funds: vouchers are programmed to support simple distribution of funds (fees) as
per the Terms Contract. The unavoidable technological fees, such as blockchain
gas, are paid by the transaction initiator or by a predefined actor.

Processing consists of several actions, that are executed and recorded on-chain:
the definition of the underlying asset and the promise for its redemption,
the fee and delivery negotiating between the keepers,

upkeep of the voucher order set and

final steps at redemption: validation, execution, ratings and challenges.

Notably the Consumer only interacts with the permissionless blockchain, while all
other actors mainly interact with the Redeemeum network and access the
permissionless chain mainly for payments. From the Consumer’s perspective, the
protocol is comparatively flat.

7.3.3 Communications

Communications protocol is serving as transport rails for data as well as messaging
between participants. It uses end-to-end encryption - since parties are aware of
each other’s addresses, asymmetric encryption can be used and form private,
per-voucher channels. While the finalized agreements are visible to others, the prior
negotiation is private. Communications are also based on a decentralized model,
e.g. Postal Service over Swarm and Swarm Feeds.

25

7.3.4 Storage & Data

To minimize on-chain data for reasons of costs and ease of access,
space-consuming data is stored on a specialized decentralized storage system like
Swarm, including additional descriptions of vouchers, rich content, voucher
ratings, keepers reputation scores etc.

Attention is given to the data and metadata that unlocks valuable insights into the
operation and usage of the protocol, such as good data, routing metadata,
quantitative & qualitative ratings, value for money etc. All processing and data
exposure can be automated through external platforms such as Ocean Protocol,
prepared for further use in data marketplaces, analytics etc. Where appropriate, it
is consent-driven and processed to protect the privacy and anonymity'*.

The data is a valuable part of the platform, but not all of it can be shared openly,
because the platform doesn’t own it. Instead, it is the users who control their data
and should they agree to share it selectively, that might be against reimbursement
and under privacy-preserving guarantees.

7.3.5 Front-end & Developers support

Enforcing compliance with the protocol is a given using blockchain technology, but
that is only covering the back-end. The front-end is more chatty, ephemeral and as
such implies a less strict approach, covered by providing a standardized API
(Application Programming Interface) and an SDK (Software Development Kit) for
keepers and consumer-facing applications to streamline the process and minimize
the development time for users.

The negotiation part of the process, where the details of vouchers get defined,
doesn’t require the use of distributed ledger, since standard cryptographic methods
suffice. Nonetheless, once the commitments are recorded on-chain, the smart
contracts will only allow the process flow as it was agreed upon.

7.3.6 Interoperability with the wider ecosystem

Rather than reinventing the wheel for each auxiliary component, the protocol
evolves best when it is in sync with the wider ecosystem. By plugging-in the best
available solutions, Redeemeum aligns to the convergent model, as described by
Outlier Ventures: “The most successful networks, projects, and organisations within
the Convergence Ecosystem will be those that have inclusive and aligned
communities. The Convergence Ecosystem drives collaboration rather than
competition.”*®

14 “Elastic Sensitivity - Noah Johnson, Joseph P. Near, Dawn Song.” 4 Sep. 2018
https://github.com /uber/sql-differential-privacy . Accessed 10 Mar. 2019.

15 "The Convergence Ecosystem, Building the Decentralized Future - Outlier Ventures."
https://outlierventures.io/wp-content/uploads /2018 /03 /The Convergence Ecosystem Re
port Outlier Ventures 2018.pdf . Accessed 15 Feb. 2019.

26

https://github.com/uber/sql-differential-privacy
https://outlierventures.io/wp-content/uploads/2018/03/The_Convergence_Ecosystem_Report_Outlier_Ventures_2018.pdf
https://outlierventures.io/wp-content/uploads/2018/03/The_Convergence_Ecosystem_Report_Outlier_Ventures_2018.pdf

For these reasons, Redeemeum Protocol is working hand-in-hand with platforms
that provide services such as decentralized identity - a long awaited piece of the
digital world puzzle that is finally within reach due to blockchain technology.
Self-sovereign identity, as its subset, gives users a true control over their digital
identity, because it is consent-based and following the principle of least disclosure.
The DID provider will be chosen based on several requirements, such as the ability
to use multiple addresses linked to a single identifier, key recovery mechanism to
ensure an uninterrupted user experience and general compatibility with
Redeemeum’s stack.

Converting between currencies, loans and refactoring are auxiliary services that are
naturally left to specialized providers. Likewise, accessing off-chain data and
triggering on-chain transactions are some of the tasks for oracles.

Interoperability with existing, legacy systems is important for the adoption and
even though smart contracts can’t access the off-chain world, Redeemeum has
placeholders to store passive data which the legacy software can interpret and
trigger further actions. For example, it is possible to attach arbitrary data to the
voucher, that is needed to verify the redemption conditions, such as a special code
to redeem the voucher for a rent-a-car service.

Redeemeum, a web3 component for vouchers. The capability of blockchain to
empower the edges by unlocking the decentralized internet with read/write/execute
operations, also re-defines how vouchers can be used. As a web3 component,
Redeemeum provides a uniform way to issue, trade and redeem a diverse set of
voucher types. It can be embedded into other DApps, for example to issue
exchangeable tickets or to reward their users with redeemable tokens for
goods/services, a.k.a. RSVs.

8 Voucher Issuance and Redemption Process

A voucher token is issued when a voucher order is filled, passing all checks and
payment forwarded to escrow. Zero-pay vouchers are also possible when all parties
relinquish their fees.

Note: henceforth, complex paths are described. Redeemeum does, however, not
prevent simpler flows, e.g. where the Producer is also the Collector and/or
Aggregator, or Relayers are omitted, or there are multiple Aggregators and/or
Relayers for a single voucher offer.

e Producer-maker Orders - where the Producer is offering assets for sale,
typical for voucher type of exchangeable tokens; the focus of this chapter.

e Consumer-maker Orders - where Consumer requests a voucher, typical for
voucher types such as membership cards, gift certificates etc.

27

8.1 Producer-Maker Orders

The following diagram describes voucher lifecycle from the offer till redemption.

Producar-Maker Order

g

g 8. Contract

= Perfarmancs

u ?

E 3. Evaluain 4. Grant Transfar Sa, Fil 7. g,

3 _., + . 9, Challenge
= Woucher Terms Approval Woucher Ordar Redemption Process
L{’J Process

A | |

Y Y

ii e e
EE & E:r:m' " Trater Feas
§ § Paymant 10 Actors

%‘ Zh. LIE:E :E-Jmar

A

E 2, Voucher .

§ | Lo

E 1. Initiste :

=] Vaucher Ornder

o

1. Producer commits to a promise of delivering a good or service. This is an
offer to an Aggregator, who then assembles it into a voucher order. Prior to
that, Producer can negotiate the delivery with a set of Collectors.

2. (a) Voucher Order handshake (see details below) is performed between
Producer, Aggregator and Relayers, (b) resulting in the Relayer listing a
complete Voucher Order.

3. Consumer evaluates terms of Voucher Order on Relayer’s public order book.

4. If Consumer wants to buy a voucher, i.e. fill an order, Consumer grants
approval for transferring sufficient funds. Note that a single transfer
approval may be sufficient for multiple vouchers, potentially bought later.

S. The Consumer then (a) fills the Voucher Order. Voucher Kernel contract
then (b) issues to the Consumer a non-fungible, non-divisible token
representing the Consumer's agreement to the terms contract and the right
to redemption.

6. The Cashier contract transfers the payment amount into escrow.

7. Later on, the Consumer initiates the Redemption Process (detailed below).

8. The Collector performs the contract (this could be providing a service,

delivering a good or applying a discount or promotion).

28

9. The Consumer may challenge the redemption during the challenge period, in

which case the Aggregator will perform arbitration (or invoke an external
service) and may recalculate fees and/or slash deposits.

10.The Cashier contract transfers calculated fees to actors.

8.2 Voucher Order Handshake

The following diagram and text describes the Voucher Order Handshake process,
where Producers, Aggregators and Relayers determine and agree on voucher’s
qualitative rating and distribution of fees.

Note: the agreements between Producer and Collectors, authorized to collect a set of
vouchers, are arranged beforehand and need not be repeated.

Voucher Order Handzhake

% Send colleclion

% agraaments, fees

= T

E- i 4. 3end Relayer 6. Lisl Viouches

o ' fee schedule Order on baok

® ;

:g E 2 Agcesg 3. Requeasl 8. Construct &

? E Quality & Relayer fee Send Vouches

= i Likelibsoosd schedule Crclesr

g |

g 1 Fl-e:p.mﬁl

Voucher Order

E creation

1. Producer requests creation of a Voucher Order from an Aggregator by
sending a Voucher Offer, with defined promise of goods/services to be
delivered under defined conditions by contracted Collectors.

2. Aggregator assesses the Likelihood of Redemption and Quality Rating of the
offer.

3. If Aggregator wants to use Relayer(s), then Aggregator requests their fee
schedule.

4. Relayer sends fee schedule and receiving address to Aggregator.

S. If fees comply with Aggregator parameters, then Aggregator constructs a
complete Voucher Order using inputs from Aggregator and Relayer, and
assigns Voucher Order to Relayer.

6. Relayer lists completed Voucher Order on their order book.

8.3 Redemption & Challenge Process

The following diagram and text describes the redemption and challenge process,
which assumes initial conditions where Voucher Kernel contract has transferred
newly minted Voucher to Consumer and escrowed payment and any deposits.

29

Note: challenging is possible immediately after the minting of a Voucher Token, up
until token expiration delayed by the full challenge period. E.g. a voucher token is
minted at time T, expires at 7+ 10 with a challenge period of 3, then a challenge is
possible in the interval [T, T +10+3).

Redemption & Challenge Process
E 2. Colac 3, Perform
& Viouchar e conbract
E Token promise
T
i X
£ 1. Present — Mo
é Venichar -.:’:_"'_'\'__FF 4 .Lhe:ll.n.?nllie -\-_"}_ 11. Rate voucher
Takan -\.______I-I\-|I.rl.:'iﬂ_'_'_'_'__o-
= Yoz ":'
= JI-
£ EE 10 Bum Vaucher
2.2 c Teken
2§ -
.E i &, Trarsfer 9, Transfer
] E contractad fund recalculatad fund
I'.Tl " amourls amourls
g
14
] Y o
= T -H““H—___ B, Log nutcomis
i 6. Arbilration (ee—— Challenge ~___—eejiie| of challarga
= reﬂlg}f"ﬂf g anchain
E" -
1. Consumer presents voucher token to Collector.

2. Collector validates and collects voucher token.

3. Collector performs the promise (typically renders goods, services or
promotional offer).

4. The challenge period starts ticking upon redemption. If the challenge period
is undefined (i.e. equals 0), the voucher does not support challenges.

5. If the Consumer does not challenge before the end of the challenge period
then Voucher Kernel contract sets the r-value to 1 (redemption promise
delivered), then it calculates originally contracted fund amounts and
transfers them via Cashier contract.

6. If Consumer challenges before the end of the challenge period then the
Aggregator performs off-chain arbitration.

7. If the challenge is not upheld, the process continues as in step 5. If the
challenge is upheld, it is followed by step 8.

8. Aggregator registers outcome of challenge on-chain by setting the r-value
between O (redemption promise not delivered) and 1 (promise delivered).

9. Cashier contract calculates and transfers fund amounts.

30

10.Voucher Token is finally burned when the challenge period expires or the
challenge is resolved.

11.Consumer can optionally rate the voucher after the redemption or when
potential challenge is resolved.

8.4 Funds

In order to give the system maximum security, the management of funds is defined
in detail by the Terms Contract and controlled by the Voucher Kernel:
e input funds are in accordance with input code, e.g. Consumer buys the
voucher and funds are transferred into escrow until redemption;
participants commit to smart contracted terms, e.g. by listing their fees;
commitment to the authority of the Aggregator to arbitrate a challenge;
receive output funds in accordance with output code.

Redeemeum has a defined schema for the escrow and distribution of input funds.
Alternative schemes can be defined and linked to the Voucher Kernel contract.

See detailed description in Appendix - Details of Funds Distribution.

9 Token Model

When designing complex systems such as token models, it is beneficial for
designers to be able to draw upon the results of previous experiments. Results
from early token experiments are only just beginning to augment cryptoeconomic
theory with empirical evidence. What follows then, is the starting point for the
evolution of Redeemeum’s token model.

9.1 Protocol objectives

Redeemeum protocol’s high-level objectives are to:

e Incentivise participation in the network

e Enable the origination and creation of RSVs.

e Set accurate expectations of quality- by accurately report the quality of the
goods and services underlying RSVs to enable Consumers to make an
informed purchase decision.

e Be an honest broker - by fairly arbitrate disputes against the standard of the
quality rating.

e Enable participants to contribute to the operation of the protocol and be
compensated accordingly.

Protocol challenges that need to be mitigated are:

e How to verify that RSVs were redeemed?
e How to assess the quality of RSV redemptions?

31

9.2 Redeemeum Token

Redeemeum (RDM) is the native ERC-20 compatible work token of the Redeemeum
protocol that game-theoretically incentivises protocol actors to participate in a
secure and economically rational way, without the need for a centralized third

party.

Redeemeum tokens are necessary in order to enable the protocol to function as
follows:
e To incentivise valuable work and transaction validation through staking, and
to deter poor work and protocol violations through slashing.
e For coordinating the assignment of work in accordance with the value of
staked and delegated tokens.
e As a unit of account for protocol fees and rewards.

RDM is not a medium of exchange token, instead RSVs may be purchased using
any currency denominated within the RSV contract. Protocol fees may be paid by
any token that is contained within a whitelist which is curated by the governance
mechanism. The expectation being that suitable currencies would be stable,
economical and liquid.

9.3 Token model function

The Redeemeum token model functions as follows:
e Validate transactions

o Aggregators perform the role of validators in Redeemeum network.

o Validators stake Redeemeum tokens and receive rewards for their
work.

o Redeemeum token holders can delegate their tokens to Aggregators to
earn a share of validation rewards.

o Validators and Delegators can have their stakes slashed for protocol
violations.

e Perform work

o Aggregators perform the work of onboarding Producers, originating
voucher orders, accurately reporting the quality rating of RSVs and
arbitrating fairly.

o If Consumers rate redemption quality equal or above the Aggregator’s
rating, Aggregator and Delegators are rewarded. If consumers rate
below, stakes are slashed.

o If Producer or Consumer deems Aggregators dispute resolution unfair,
then stakes are proportionally slashed.

o Therefore Aggregators are incentivised to set reasonable expectations
of quality and be an honest broker in arbitrating disputes.

o The demand and therefore pricing for RSVs is driven by quality
ratings which incentivises Producers and Collectors to maintain
high-quality.

32

e Assign work
o Aggregator work (originating voucher orders, accurately reporting the
quality rating of RSVs and arbitrating fairly) is probabilistically
assigned based on an Aggregator’s staked and delegated tokens.
o Verify work
o Verification of redemption will be performed on-chain by signing of
Voucher Tokens by Consumers and Collectors. However, verification
of quality is described within ‘Perform work’ section.
e Payment of fees
o Redeemeum tokens are used for the payment of protocol fees.
e Rewarding target behaviours
o Target behaviours including data sharing, and consenting to receive
messages and advertising will be rewarded with Redeemeum tokens.
The size of rewards will be a function of e.g data shared, third party
usage of shared data and Redeemeum tokens staked by the
Consumer. Redeemeum tokens earned can then be staked, sold or
redeemed for RSVs within the system. At all times participants retain
sovereignty over their data, and participation is entirely voluntary.
e Web 3 personal data marketplace
o The paid side of Redeemeum’s business model provides businesses
with access to a Web 3 personal data marketplace. Fees are paid into
the token pool using Redeemeum tokens, with fee levels set via the
governance mechanism.

-, o o, mm -,

—— e —— — — o — —— e = o | ————————

\Redeemeum DAQ / : IPublic

| » Uil

IFoundanon , IUTIlITy

I T T TWork oken T :
. S ,

Redeemeum token model value flow

9.4 Token issuance

Network participation is important in order to ensure the quality and security of the
network. Therefore, the Redeemeum token issuance model will algorithmically
adjust the inflation rate in order to meet a specific participation target which is set
and adjusted by the governance mechanism. This means that if the participation
rate is below the target, the inflation rate will increase thus increasing rewards and
incentives to participate. Conversely, should the participation rate be exceeded, the
inflation rate will decrease- reducing the incentives to participate.

33

10 Governance

Redeemeum protocol will be governed by a DAO which will enable Redeemeum
token holders to:
e make decisions regarding updates to the protocol to ensure that the protocol
thrives
set protocol parameters such as participation targets, fees and rewards
assign protocol funds to development initiatives, grants.

The precise mechanism for governance will be developed in tandem with the
development of the protocol and with reference to the ongoing developments in this
space. At time of writing, the projects with the most influence on the authors’
thinking are the governance mechanisms of Polkadot and dxDAO, and the
governance platforms of Aragon and DAOstack.

11 APPENDIX

11.1 Detailed Voucher Specification
Let Assetbe claimed at the redemption of a voucher, i.e. the goods or services
delivered. It is offered by the Producer Pr to the Consumer Cn. Versioning

enables continuous operation of older assets to coexist with new ones.
Categorization is used for narrowing the discovery of vouchers and can include
prefixed namespaces for more detailed categorization. An asset can be further
described with a pointer to additional information, URI (Uniform Resource

Identifier).
Asset= {ID,,, Pr, version, title, description, category, URI}
where ID is asset’s identification, calculated as:

asset

ID ., = hash(Pr, version, title)

Let Promisebe the promise of the Producer to deliver the Asset to the Consumer

under programmable restrictions on redemption, collection, monetary allocations
and human-readable conditions. Promises are a core construct that enable
reusability across multitude of participants, while still being anchored to the same
Producer.

Promise = {ID

promise®

1D value, merchandise, conditions;y,,challeng terms}

asset> eperiod ’

where ID

romise 1S Calculated as a hash of its components;

valueis an encoded value of the voucher, defined with the type of the voucher, the

type of the representation of value which can be either amount or percentage,
currency denomination, and the number of vouchers needed for redemption (zero, if
the voucher can be used repeatedly and is therefore not consumed).

34

value = {type, . cher» VPCoues qUantity, currency, spend}

where:
pe,oucher € texchange if 0, discount if 1, monetary if 2}

lypevalue S {fixed lan ratio lfl A lypevoucher = discount}
quantily € {amount iftypevalue = 0’ percentage i]{lypevalue = 1}
spend € {nconsume if > 0, Opresent if 0}

merchandiseis an optional, collector-specific meaning of the voucher, important for

the Collector’s interpretation, such as a voucher identification by the Collector or a
pointer to an external restrictions object. Note that if merchandiseis specified, then

conditionsyr, must also be specified in order to enable understanding of restrictions

in natural language.

merchandise = IDC'

. . Cl
voucher V ext.restrictions

voucher

challenge,,,.,, is optional. The redemption process can support a challenge by the

Consumer when challenge,,,,,>0, in which case the Aggregator is engaged for

eriod

dispute resolution.

terms define the collection and allocation of funds, defined within an immutable

contract, that is instantiated with parameters corresponding to a particular
voucher set; terms are a separate construct, enabling common calculation
templates:

terms = {terms terms

contract? parameters }

where the terms is deployed at a particular address, defining the calculation of

contract
input/output funds (such as the fees per participant); and ferms

parameters
instantiating the terms contract with specific parameters, encoded in a predefined
format.

Let Promise define the agreements between Producers and Collectors, for

collection
example, which Collectors are authorized for that voucher and their fees. If there
are no restrictions, it can be omitted. The redemption process can support a
challenge by the Consumer (when challenge,,,.,, > 0), in which case the Aggregator is
engaged for dispute resolution. It is also used to register redemption attempts at a
particular Collector.

_ cl
= {agreement

. .l
Promlsecollection voucher’redemptloni }

Let voucher Offer then wrap a Promise, adding processing details such as
groupings and validity period. It is a base building block for the issuing of
vouchers, uniformly addressable across all Relayers, which is required to manage
the number of available voucher offers.

Offer = D s 1D ppiser QUANLLY gy05 GUANTLY pppinings PTs validity .. }

35

where:
ID,,, is voucher offer’s identification, calculated at the time of generation as:

ID ,, = hash(ID

promise® time‘gtamp’ Validitype”’bd)

quantity,,,,, denotes the number of similar vouchers in the group. Default is 1,

meaning that a default group of equal (“fungible”) vouchers represents only one
“non-fungible” voucher.

qUANtity o i, denotes the remaining number of available vouchers in the group.

Default value is equal to quantity,,,,, - It is decreased when voucher orders get filled.

Finally, a Voucher is instantiated from the Offer when the offer is accepted by the

Consumer, usually against payment, but not mandatory.
Voucher = {ID Cn, ID 1, }

voucher?

11.2 Smart Contracts

The core logic is driven by smart contracts that enable a high degree of autonomy,
needed for an uninterrupted and uniformly accessible public protocol. Measures
are taken to evolve contracts in a graceful way and to allow intervening in the
automatic operation via a chosen governance mechanism.

Asset Registry serves to provide the transactional base. Vouchers can be issued
multiple times for the same asset. Versioning enables updating the asset details as
its properties change. Example: rent-a-car package, a bar of chocolate ...

Voucher Kernel controls the use of the voucher, such as the issuance of the token,
possible transfers between Consumers and final redemption. Voucher Kernel covers
core logic:

managing records of available vouchers (voucher orders, groups etc.)
minting of voucher tokens

map between Term contracts and voucher tokens

routing payments and fees between actors

routing metadata

arbitration in case of disputes

ratings by Consumers

Terms Contracts are recording the financial terms and conditions of vouchers.
Being in a separate contract, they can be reused for multiple vouchers while also
making it easier to shield potentially private data. Financial terms for vouchers
generally conform to a common format, with flexible price/costs variables, starting
from the simplest zero-fee tokens awarded to consumers directly, to more complex
value-chain, e.g. reselling, dispute management, collateralization agreements etc.

36

Collection Contract defines the agreements between Producers and Collectors
(authorizations and fees), which are verified during the redemption. It is used for
registering redemption events.

Cashier Contract is managing the funds and is minimalistic for security reasons.
It can accept funds as inputs from participants as per the Terms Contract, hold
them in escrow and release them to corresponding actors after the redemption.

Transfer Proxy is an intermediary contract managing approvals of fund transfers
in any currency. It is a separate contract in order to support upgrades of the
protocol logic without requiring additional re-negotiating.

Oracle Contract enables interactions between blockchain and the external world.
Some examples include: intercepting fiat payments, fetching currency rates, etc.

11.3 Operational Considerations

The nature of any decentralized project bears risks that must be considered in
advance. Just as the use of blockchain technology provides a more resilient
security through Object-Capability model'®, its immutable nature limits the options
of responding to incidents. Identifying and addressing risks is a crucial part of
blockchain-based system design, here only indicated for brevity.

Securing the nodes

As the network will be public, there needs to be appropriate security model in place
for the node operators, such as sentry nodes that are protecting full nodes and
unikernel-based design, that is both lightweight to maintain and has minimal
security footprint. Unikernels, such as MirageOS and UniK provide an immutable
infrastructure for node operators, which is often under-appreciated in the
blockchain space.

Contingency procedures

Critical smart contracts can be paused and later resumed to respond to emergency
situations. Details depend on the governance model in place. Redeemeum will
facilitate a predefined way for emergency communications between affected
participants, minimizing the uncertainty of such events.

Code audits

Redeemeum is encouraging a wider community to participate in its development
and maintenance. An attack where malicious code is submitted to the project’s
source-code repository needs careful consideration'’. All contracts must undergo

16 That is in contrast to the traditional Access Control Lists, which are problematic
for being concentrated targets for hackers and thus exploited

7 "Enterprise Ethereum Alliance Client Specification v3"
https:/ /entethalliance.github.io/client-spec/spec.html . Accessed 15 Feb. 2019.

37

https://entethalliance.github.io/client-spec/spec.html

security audits by reputable specialists, no exceptions. Contracts that are involved
in the management of funds are maximally restricted in their scope.

Copycats

The defense against parasitic contracts rests in the minimal operating fees of the
protocol and its valuable state'® (funds in escrow, network effects, off-chain
integrations and partnerships).

18 “On Value Capture at Layers 1 and 2 - Multicoin Capital.” 14 Mar. 2019.
https://multicoin.capital/2019/03 /14 /on-value-capture-at-layers-1-and-2/ . Accessed 26
Apr. 2019.

38

https://multicoin.capital/2019/03/14/on-value-capture-at-layers-1-and-2/

11.4 Details of Funds Distribution

We define the following variables:

e [is the input funds for participant j

e O, is the output funds for participant j

e D, is the decimal fraction of net voucher price that transfers to output funds
for participant j, where D; = O; / V,
F, is the flat fee that transfers to output funds for participant j
r is the redemption coefficient r, which represents the degree to which the
promise has been delivered
Gy is the total gas fees*
V; is the voucher price

Several methods are provided, such as:

e sending the funds into escrow, registering the input accordingly;

e optional routing of Consumer’s actions to the blockchain-connected proxy
that pays for technological fees, e.g. gas paid by the Producer on behalf of
the Consumer

e calculating the outputs per participant when releasing the funds.

The following table describes a simple example where:
Inputs:
e Input code
m Consumer Inputs voucher price, so I, = V, = 100
m For all other participants Input is zero, I, = 0

Redemption
e Redemption is completed but a challenge is upheld, with r = 0.5

Outputs
e Output code:
m Any surplus funds are returned to Consumer, so
Ocn= Vp - Op; - Oy - O
m All other participants take a fraction of funds: O;= r*D;* V,

e Output values:
e Producer receives 92% of funds
Aggregator receives 5% funds
Relayer receives 3% funds
As r = 0.5 above funds are proportionately reduced
All other participants receive 0% funds

39

D, Value
Dy, 0.92
Dy, 0.05
Dge 0.03
D¢, 0

Dy 0

D, 0

*Note: technological fees, such as gas on Ethereum main network, are excluded
from the example for simplicity. In real scenario, they could be covered by the
keepers, in order to make the user experience smoother.

Participant Input Code Input Output Code Outpu
values t
values
Producer (Pr) I,,=0 0 Op.= 1*Dp * V, 46
Op, = 1*0.92*100
Aggregator L = 0 0 Op= 1%Dy* Vp 2.5
(Ag) O, = 1*0.05* 100
Relayer (Re) I,.=0 0 Oge = r*Dg. * Vp 1.5
Og.= 1*0.03* 100
Consumer cn = Vp 100 Ocn=Vp - Op, - Oy, - Ok, 50
(Cn) I, = 100 Oc,=0
Collector (Cl) I,=0 0 O0y=0 -
Third Party | I,,=0 0 O, =0 -
(3P)
Gas fees (Gg)*
Total Input (I,,,) 100 Total Output (O.,,) 100

40

